Phương trình đựng căn – Bất phương trình chứa căn

Các dạng phương trình đựng căn bậc hai, bất phương trình đựng căn thức bậc hai vẫn là một dạng toán xuất hiện thêm nhiều trong những kì thi học tập kì, thi tuyển chọn sinh vào lớp 10, thi THPTQG.

Bạn đang xem: Giải bất phương trình chứa căn lớp 10

Để giải được phương trình, bất phương trình cất căn, các em học sinh cần nắm vững kiến thức sau:

1. Hiệ tượng chung nhằm giải phương trình, bất phương trình đựng căn bậc 2

Nguyên tắc bình thường để khử lốt căn thức là bình phương 2 vế của một phương trình, bất phương trình. Tuy nhiên, để bảo vệ việc bình phương này cho chúng ta một phương trình, bất phương trình mới tương tự thì rất cần phải có điều kiện cả 2 vế pt, bpt phần nhiều không âm.


Do đó, về phiên bản chất, chúng ta lần lượt kiểm tra 2 trường hòa hợp âm, với không âm của những biểu thức (thường là 1 trong vế của phương trình, bất phương trình đã cho).



2. Các dạng phương trình cất căn, bất phương trình chứa nền tảng gốc rễ bản

Có khoảng chừng 4 dạng phương trình chứa căn, bất phương trình cất căn cơ bản đó là


*

3. Bí quyết giải phương trình chứa căn, cách giải bất phương trình chứa căn

Chi ngày tiết về phương thức giải những dạng phương trình, bất phương trình chứa căn, xin mời thầy cô và các em học sinh theo dõi trong video sau đây.


4. Một số ví dụ về phương trình với bất phương trình cất căn thức

Ví dụ 1. Giải phương trình


$$sqrt 4 + 2x – x^2 = x – 2$$


Hướng dẫn. Phương trình vẫn cho tương đương với


<eginarrayl,,,,,,,left{ eginarraylx – 2 ge 0\4 + 2x – x^2 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x^2 – 3x = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 0, vee ,x = 3endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình sẽ cho gồm nghiệm tốt nhất $x = 3$.

Ví dụ 2. Giải phương trình

Hướng dẫn. Phương trình đang cho tương đương với


<eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\25 – x^2 = (x – 1)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\2x^2 – 2x – 24 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 4, vee ,x = – 3endarray ight. \ Leftrightarrow x = 4endarray> Vậy phương trình tất cả nghiệm độc nhất $x=4$.


Ví dụ 3. Giải phương trình


Hướng dẫn. Phương trình đã cho tương tự với


<eginarrayl,,,,,,,,sqrt 3x^2 – 9x + 1 = x – 2\, Leftrightarrow left{ eginarraylx – 2 ge 0\3x^2 – 9x + 1 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\2x^2 – 5x – 3 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 3 vee ,x = – frac12endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình đã cho gồm nghiệm nhất $x = 3$.


Ví dụ 4. Giải phương trình $$sqrt x^2 – 3x + 2 = x – 1$$


Hướng dẫn. Phương trình sẽ cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\x^2 – 3x + 2 = left( x – 1 ight)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 1endarray ight. \ Leftrightarrow x = 1endarray$$ Vậy phương trình vẫn cho bao gồm nghiệm độc nhất $x = 1$.


Ví dụ 5. Giải phương trình $$sqrt x^2 – 5x + 4 = sqrt – 2x^2 – 3x + 12 $$


Hướng dẫn. Phương trình đã cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx^2 – 5x + 4 ge 0\x^2 – 5x + 4 = – 2x^2 – 3x + 12endarray ight.\Leftrightarrow left{ eginarraylleft( x – 1 ight)left( x – 4 ight) ge 0\3x^2 – 2x – 8 = 0endarray ight. & \Leftrightarrow left{ eginarraylleft< eginarraylx le 1\x ge 4endarray ight.\left< eginarraylx = 2\x = frac – 86endarray ight.endarray ight. Leftrightarrow x = frac – 86endarray$$ Vậy phương trình sẽ cho có nghiệm tuyệt nhất $x = frac-86$.


Ví dụ 6. Giải bất phương trình $$x + 1 ge sqrt 2left( x^2 – 1 ight) $$

Hướng dẫn. Bất phương trình vẫn cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx + 1 ge 0\left( x + 1 ight)^2 ge 2left( x^2 – 1 ight) ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\x^2 – 2x – 3 le 0\x^2 – 1 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\– 1 le x le 3\left< eginarraylx le – 1\x ge 1endarray ight.endarray ight. Leftrightarrow left< eginarraylx = – 1\1 le x le 3endarray ight.endarray$$

Vậy tập nghiệm của bất phương trình là $S = left< 1;3 ight> cup left – 1 ight$.

Ví dụ 7. Giải bất phương trình $$2x – 5 left{ eginarrayl2x – 5 – x^2 + 4x – 3 ge 0endarray ight. Và left( 1 ight)\left{ eginarrayl2x – 5 ge 0\left( 2x – 5 ight)^2 endarray ight. & left( 2 ight)endarray ight.$$

Hệ bất phương trình (1) tương tự với $$left{ eginarraylx 1 le x le 3endarray ight. Leftrightarrow 1 le x Hệ bất phương trình (2) tương tự với $$eginarrayl,,,,,,,left{ eginarraylx ge frac52\5x^2 – 24x + 28 endarray ight.\Leftrightarrow left{ eginarraylx ge frac52\2 endarray ight. Leftrightarrow frac52 le x endarray$$

Lấy đúng theo tập nghiệm của 2 trường vừa lòng trên, được đáp số cuối cùng là $S = left< 1;frac145 ight)$.

Ví dụ 8. Giải phương trình $$sqrt x + 4 – sqrt 1 – x = sqrt 1 – 2x $$

Hướng dẫn. Phương trình sẽ cho tương tự với

$$eginarrayl,,,,,,,sqrt x + 4 = sqrt 1 – 2x + sqrt 1 – x \Leftrightarrow left{ eginarrayl– 4 le x le frac12\x + 4 = 1 – x + 2sqrt (1 – x)(1 – 2x) + 1 – 2xendarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\sqrt (1 – x)(1 – 2x) = 2x + 1endarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\x ge – frac12\(1 – x)(1 – 2x) = 4x^2 + 4x + 1endarray ight.\Leftrightarrow left{ eginarrayl– frac12 le x le frac12\x = 0 vee x = – frac72endarray ight. Leftrightarrow x = 0endarray$$ Vậy phương trình đang cho có nghiệm tuyệt nhất $x = 0$.

Ví dụ 9. Giải phương trình $$sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x $$

Hướng dẫn. Điều kiện $left{ eginalign và 3x+1ge 0 \ & 2x-1ge 0 \ và 6-xge 0 \ endalign ight.Leftrightarrow left{ frac12le xle 6 ight.$

Với đk đó, phương trình vẫn cho tương đương với $$eginarrayl,,,,,,,sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x \Leftrightarrow ,,,sqrt 3x + 1 = sqrt 6 – x + sqrt 2x – 1 \Leftrightarrow ,,,3x + 1 = 6 – x + 2x – 1 + 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,,2x – 4 = 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x – 2 = sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x^2 – 4x + 4 = – 2x^2 + 13x – 6,,,(x ge 2)\Leftrightarrow ,,3x^2 – 17x + 10 = 0\Leftrightarrow left< eginarraylx = 5\x = frac23left( l ight)endarray ight.endarray.$$ Vậy phương trình vẫn cho bao gồm nghiệm $x=5$.

Ví dụ 10.

Xem thêm: Mô Tơ Là Gì ? Phân Biệt Chi Tiết Các Loại Motor (2021)

Giải bất phương trình $$2sqrtx-3-frac12sqrt9-2xge frac32$$

Hướng dẫn. Điều khiếu nại $left{ eginalign và x-3ge 0 \ và 9-2xle 0 \ endalign ight.Leftrightarrow 3le xle frac92$

Với điều kiện trên, bất phương trình đang cho tương đương với <eginarrayl,,,,,,,2sqrt x – 3 ge frac12sqrt 9 – 2x + frac32\Leftrightarrow 4left( x – 3 ight) ge frac14left( 9 – 2x ight) + frac94 + frac32sqrt 9 – 2x \Leftrightarrow 16x – 48 ge 18 – 2x + 6sqrt 9 – 2x \Leftrightarrow 9x – 33 ge 3sqrt 9 – 2x \Leftrightarrow left{ eginarrayl18x – 64 ge 0\left( 9x – 33 ight)^2 ge 9left( 9 – 2x ight)endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\81x^2 – 576x + 1008 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\left< eginarraylx le frac289\x ge 4endarray ight.endarray ight. Leftrightarrow x ge 4endarray>

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là $S=left< 4;,frac92 ight>$.

Xem những ví dụ khác nữa trên đây: Phương pháp đổi khác tương đương giải phương trình chứa căn