Các dạng toán phương trình lượng giác, cách thức giải và bài xích tập trường đoản cú cơ phiên bản đến nâng cao - toán lớp 11

Sau khi làm quen với các hàm lượng giác thì các dạng bài tập về phương trình lượng giác chính là nội dung tiếp theo mà những em đã học trong lịch trình toán lớp 11.

Bạn đang xem: Các phương trình lượng giác


Vậy phương trình lượng giác có những dạng toán nào, phương pháp giải ra sao? bọn họ cùng mày mò qua nội dung bài viết này, đồng thời áp dụng các cách thức giải này để làm các bài tập tự cơ phiên bản đến nâng cao về phương trình lượng giác.


I. Lý thuyết về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong cung thỏa sinα = a, lúc ấy phương trình (1) có các nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Lúc đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có những nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa cosα = a, lúc đó phương trình (2) có các nghiệm là:

 x = ±α + k2π, ()

- Nếu α thỏa mãn điều kiện 0 ≤ α ≤ π cùng cosα = a thì ta viết α = arccosa. Khi đó các nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay điều kiện của phương trình (3) là: 

*

- Nếu α vừa lòng điều khiếu nại

*

- Nếu α thỏa mãn nhu cầu điều khiếu nại

*

II. Những dạng toán về Phương trình lượng giác và phương pháp giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng các công thức nghiệm tương ứng với mỗi phương trình.

* lấy ví dụ 1 (Bài 1 trang 28 SGK Đại số cùng Giải tích 11): Giải các phương trình sau:

a) b)

b)

d)

*

* giải mã bài 1 trang 28 SGK Đại số và Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* lấy một ví dụ 2: Giải những phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một trong những phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để lấy về phương trình lượng giác đã cho về phương trình cơ phiên bản như Dạng 1.

* lấy ví dụ 1: Giải các phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu ý: Bài toán trên áp dụng công thức:

 

*
*

 

*
*

* lấy ví dụ như 2: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu lại ý: bài xích toán áp dụng công thức biến đổi tích thành tổng:

 

*

 

*

 

*

* lấy ví dụ như 3: Giải các phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu lại ý: Bài toán trên có vận dụng công thức biến đổi tổng các thành tích và bí quyết nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình hàng đầu có một hàm con số giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* lấy ví dụ 1: Giải các phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai bao gồm một hàm con số giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta bao gồm phương trình at2 + bt + c = 0.

* giữ ý: Khi để t=sinx (hoặc t=cosx) thì phải có điều kiện: -1≤t≤1

* ví dụ như 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ cùng với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 đề nghị loại

*
*
 
*

* Chú ý: Đối cùng với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Cách thức giải như sau:

 - Ta có: cosx = 0 chưa hẳn là nghiệm của phương trình do a≠0,

 Chia 2 vế mang đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - ví như phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta ráng d = d.sin2x + d.cos2x, cùng rút gọn mang về dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ bí quyết 1: Chia hai vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ phương pháp 2: Sử dụng bí quyết sinx với cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu ý: PT: asinx + bcosx = c, (a≠0,b≠0) có nghiệm khi c2 ≤ a2 + b2

• Dạng bao quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu lại ý: bài xích toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng với sinx và cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Be Hóa Trị Mấy - Brom Hóa Trị Mấy

* Phương pháp

- Đặt t = sinx + cosx, khi đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu giữ ý: 

*
 nên đk của t là: 

- cho nên vì thế sau khi kiếm được nghiệm của PT (*) buộc phải kiểm tra (đối chiếu) lại đk của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 chưa hẳn là PT dạng đối xứng nhưng mà cũng rất có thể giải bằng phương pháp tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải các phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài xích tập về các dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số cùng Giải tích 11): Với các giá trị nào của x thì giá trị của các hàm số y = sin 3x và y = sin x bằng nhau?

° giải thuật bài 2 trang 28 SGK Đại số cùng Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số cùng Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT có nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT bao gồm nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số cùng Giải tích 11): Giải phương trình 

° giải thuật bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến phía trên ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT tất cả họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số cùng Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số và Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT bao gồm tập nghiệm 

*

* bài xích 2 (trang 36 SGK Đại số cùng Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° lời giải bài 2 trang 36 SGK Đại số và Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc đó PT (1) trở thành: 2t2 – 3t + 1 = 0